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Abstract: Bessel’s functions are very useful for solving many equations in cylindrical or spherical coordinates such 

as heat equation, wave equation, Laplace equation, Helmholtz equation, Schrodinger equation. In this research, we 

find the Mohand transform of Bessel’s functions.  
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1. INTRODUCTION:  

In the advance time, Bessel’s functions play a very 

important role for solving the problems of mathematical 

physics, atomic physics, acoustics, radio physics, 

nuclear physics, engineering and sciences such as flux 

distribution in a nuclear reactor, fluid mechanics, heat 

transfer, vibrations, hydrodynamics, stress analysis etc.  

Bessel’s function of order  , where   is the non-

negative integer, is given by [1-5] 
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For    , we have Bessel’s function of zero order 

denoted by   ( ) and it is defined by the  following 

infinite power series as 
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For    , we have Bessel’s function of order one 

denoted by   ( ) and it is defined by the  following 

infinite power series as 
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Equation ( ) can be written as  
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For    , we have Bessel’s function of order two 

denoted by   ( )  and it is defined by the  following 

infinite power series as 
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Mohand and Mahgoub [7] defined the new integral 

transform “Mohand transform’’ of the function  ( ) for 

    as  

 * ( )+    ∫  ( )      
 

 

 

  ( )             ( ) 

where   is Mohand transform operator. 

If the function   ( )  for      is piecewise continuous 

and of exponential order then Mohand transform of the 

function  ( )  for     exists. These conditions are 

sufficient conditions for the existence of Mohand 

transform of the function  ( ) for      

Kumar et al. [8] used Mohand transform for solving 

linear Volterra integro-differential equations. Aggarwal 

et al. [9] defined Aboodh transform of Bessel’s 

functions. Aggarwal [10] gave the Elzaki transform of 

Bessel’s functions. Kamal transform of Bessel’s 

functions was given by Aggarwal [11]. Aggarwal et al. 

[12] obtained Mahgoub transform of Bessel’s functions. 

The goal of the present research is to determine Mohand 

transform of Bessel’s functions of order zero, one and 

two.  
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2. SOME USEFUL PROPERTIES OF MOHAND 

TRANSFORM:  

2.1 Linearity property: 

If  *  ( )+    ( ) and  *  ( )+    ( ) then 

 *   ( )     ( )+    *  ( )+    *  ( )+ 

    ( )     ( ) where     are arbitrary constants. 

Proof: By the definition of Mohand transform, we have  
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where     are arbitrary constants. 

2.2 Change of scale property: 

If  * ( )+   ( ) then  

 * (  )+    .
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Proof: By the definition of Mohand transform, we have  
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Put             in equation ( ), we have  
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2.3 Mohand transform of the derivatives of the 

function  ( ) [7-8]: 

If  * ( )+   ( ) then  

a)  *  ( )+    ( )     ( ) 
b)  *   ( )+     ( )     ( )      ( ) 

c)  { ( )( )}     ( )       ( )      ( )  

      (   )( ) 

2.4 Mohand transform of some basic mathematical 

functions [7, 8]: 

Table: 1 
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3. Relation between   ( ) and   ( )[9, 12]: 
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4. Relation between   ( ) and   ( )[9-12]: 

  ( )    ( )     
  ( )    (  ) 

5. Mohand transform of Bessel’s functions: 

5.1 Mohand transform of Bessel’s function of zero 

order : 
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Applying Mohand transform both sides on equation( ), 

we get 
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5.2 Mohand transform of Bessel’s function of order 

one : 

Applying Mohand transform both sides on equation ( ), 

we have  

 *  ( )+    {  
 ( )}      (  ) 

Now using the property, Mohand transform of 

derivative of the function, on equation (  ), we have 

 *  ( )+   ,  *  ( )+      ( )-  (  ) 

Using equations ( ) and (  ) in equation (  )  we have  
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5.3 Mohand transform of Bessel’s function of order 

two : 

Applying Mohand transform both sides on equation 

(  ), we have  
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  ( )+   (  )  

Now using the property, Mohand transform of 

derivative of the function and equation (  )  in equation 

(  ), we have 
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Using equations ( )   ( ) and (  ) in equation (  )  we 

have  
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Now using equation (3) in equation (17), we have 
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5.4 Mohand transform of   (  ): 

From equation (  ), we have 
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Now using change of scale property of Mohand 

transform, we have 
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5.5 Mohand transform of   (  )  

From equation (  ), we have 
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Now using change of scale property of Mohand 

transform, we have 

 *  (  )+   [(  ⁄ )  
(  ⁄ ) 

√(  (  ⁄ ) )
] 

 
  

 
[  

 

√(     )
]     (  ) 

5.6 Mohand transform of   (  )  

From equation (  ), we have 
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Now using change of scale property of Mohand 

transform, we have 
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6. CONCLUSIONS 

In this paper, we have successfully discussed the 

Mohand transform of Bessel’s functions of zero, one 

and two orders. In future, Mahgoub transform can be 

applied for solving Bessel’s differential equations.  
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